
Enhancing VR Experiences with Smartwatch Data
Carolin Stellmacher
University of Bremen
Bremen, Germany

cstellma@uni-bremen.de

Nadine Wagener
University of Bremen
Bremen, Germany

nwagener@uni-bremen.de

Kuba Maruszczyk
University College London

United Kingdom
kuba.maruszczyk.18@ucl.ac.uk

Figure 1: Use case menu navigation: To browse through and select menu items, (a) left and right air swipe gestures and (b)
touch gestures are used. Use case mental health: Health data is used to (c) gradually reveal the VE the closer the HR gets to
the target HR and (d) predict the user’s mood, automatically adjusting colours, weather and lighting conditions to reflect the
user’s current emotion (here: anger) or to counteract it.

ABSTRACT
Nowadays, smartwatches are widely used on a daily basis by a
growing user base. They can constantly collect motion and health
related data via different sensors such as accelerometer or heart
rate sensors. This data offers new possibilities for designing VR
experiences, interacting within VR, or enhancing a VR experience
by adjusting it to its users. In this workshop paper, we explore
the design space of smartwatch-gathered data for VR, focusing on
how menu navigation can be facilitated by motion data for mid-air
gestures and by the smartwatch’s screen for touch-based gestures,
and how health data can be used to automatically adjust the VE to
encourage a relaxation of one’s HR, and to reflect or counteract the
user’s predicted mood.
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1 INTRODUCTION
Immersive experiences in virtual reality (VR) support the interac-
tionwith the virtual worldmostly through hand-held VR controllers.
These controllers are limited to user input through different types
of buttons and wrist motion tracking. Everyday wearables such as
smartwatches or fitness trackers extend these input modalities and
can additionally register user input through health data or touch
gestures. Therefore, integrating smartwatches into immersive VR
experiences expands the techniques users can use to interact with
the virtual world and enables individually-tailored virtual environ-
ments (VE). Since smartwatches have increased and will continue to
increase in popularity [34], they became ubiquitous computing de-
vices, making their sensing instruments easily available for today’s
users in the commercial domain.

On the one hand, wrist-worn devices have common motion
sensors embedded such as an accelerometer or gyroscope that track
the local movement of the user’s wrist or full-body movement, such
as steps taken. Sensor quality of off-the-shelf smartwatches has
been shown to allow for explicit interactions through, for example
intentionally performed gestures [3, 42, 45]. On the other hand,
since wearables were initially developed for the fitness domain,
specialised body sensors, such as a heart rate (HR) sensor, pulse
oximeter or thermometer, track users’ vital signs. Such health data
are usually not consciously controlled by users (although they can
learn to a certain extent to intentionally influence their vital signs
trough concentration and training), which offers objective data
reading for input and could allow for more implicit interactions [31].
This type of data extends the capability of a VR system to sense the
physical and mental state of a user in an objective and quantitative
and adapt its parameters in response to the changes in readings.
This is especially beneficial in health-related areas [25, 30, 36, 41].
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Table 1: Overview of sensors for motion and health data. Smartwatches contain additional sensing instruments for the envi-
ronment and other hardware components, for example for communication, mobile network and localisation which, though
briefly mentioning them, we do not focus on in our paper.

data category sensor description
motion data accelerometer device acceleration along X,Y,Z axes

compass/magnetometer magnetic north direction and from this all other cardinal
directions, orientation of the smartwatch

gyroscope angular velocity along device’s X,Y,Z axes
health data heart rate (HR) sensor average number of heart beats per min (bpm)

pulse oximeter red and infrared sensors measuring the oxygen saturation
of the blood (SpO2)

skin temperature sensor temperature of the skin

With this workshop paper, we take a first step in exploring the
design space of using smartwatches to enhance VR experiences. We
show how smartwatch data can enrich immersive experiences and
address current problems and research gaps. Thus, we will first give
an overview of the sensors and the corresponding data gathered
by off-the-shelf smartwatches. Then, we present two specific use
cases that use (1) motion data for mid-air gesture tracking and
touch input, to highlight their benefits for VR menu navigation,
and (2) health data to automatically adapt the VE to encourage
relaxation and promote lowering of the user’s HR, and to reflect
or counteract the user’s predicted mood. We will provide a basic
overview of the benefits of using smartwatches as input devices for
VR, highlight their positive impact on the user experience and help
set the course for future research incorporating smartwatches as
everyday proxies in VR.

2 MOTION AND FITNESS DATA
This section provides an overview of the sensors and other hard-
ware components of commercially available smartwatches. In addi-
tion, data acquisition is discussed, including the utilisation of the
companion architecture to gain access to sensor data.

2.1 Smartwatch Sensors
To identify the built-in sensors, we analysed 61 wearables (smart-
watches and fitness trackers) from the six most popular manu-
factures worldwide (Apple, Xiaomi, Huawai, Samsung, Fitbit, and
Garmin) [35]. We divided all available sensors into three different
categories, based on the type of registered data (motion, health, and
environment). Because the focus of our paper is user-generated
input, we will concentrate on motion tracking and health data (see
Table 1). The most common sensors that we have encountered
are accelerometer (92%) and HR sensor (92%), followed by gyro-
scope (67%), compass/magnetometer (46%), pulse oximeter (26%),
and skin temperature sensor (18%). Sensing instruments measur-
ing the environment include a microphone, a barometer, an air
temperature sensor, and an ambient light sensor. Smartwatches
also offer hardware components facilitating communication (Wi-Fi,
near field communication (NFC), Bluetooth), mobile network (LTE,
UMTS), and localisation (GPS, GLONASS, GALILEO, QZSS, Beidou).
Modules for user feedback include a touch screen, a speaker and a
vibration motor.

2.2 Sensor Data Acquisition
The built-in sensors provide a fixed set of raw data fields fromwhich
further information is computationally derived. A much larger set
of aggregated data contains estimations of various parameters such
as body battery, stress level, or sleep quality. The available types
of the raw data and estimated parameters depend on the device’s
features.

To allow third party applications access to these data, most smart-
watches provide a form of Web API. However, this approach is not
suitable for scenarios in which real-time, high frequency readings
from sensors are required (e.g., wrist/hand movement tracking,
gesture recognition). Although the optimal solution would be to
connect directly to the smartwatch via Bluetooth, many manufac-
turers do not provide such a direct link for practical and security-
related reasons. Instead, many smartwatches communicate with
the "outside world" using a Companion Model (shown in Figure 2a) -
a framework allowing smartwatch applications to run a companion
component on a phone or tablet device (inside a sandboxed runtime
environment). The smartwatch side can outsource tasks to more
powerful mobile device and later retrieve the result. For example,
they utilise a mobile device’s internet connection to fetch weather
data, and after it has arrived - present it to the user.

Our framework for obtaining and sending raw, real-time data
from smartwatch sensors (shown in Figure 2b) to a Unity applica-
tion makes use of the Fitbit Companion API. The main objective is
to acquire raw sensor readings from the Fitbit Versa and relay them
to the Unity application for further processing and examination.
In our system, (1) the smartwatch application obtains batched sen-
sor readings and sends them via companion peer socket to (2) the
companion component on a mobile device (Android), which relays
this data via websocket to (3) the Unity application running on the
PC.

The maximum throughput of our prototype system is 8kb per
second, allowing us to send data simultaneously from accelerometer
(3 floats), gyroscope (3 floats) and orientation readings (4 floats) at
the maximum rate of 200Hz (although reading rate is constrained by
Fitbit hardware to 100Hz). In order to manage such high frequency
sampling and to conserve CPU cycles, the smartwatch app obtains
a batched reading four times per second, resulting in 25 consecutive
samples per query. Those are send eight times a second to the Unity
application.
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(a) Companion Distributed Application Model (b) Our Companion-based Prototype for obtaining real-time sensor
data

Figure 2: Companion-based approach used to obtain real-time sensor data.

3 SMARTWATCH DATA FOR VR
INTERACTION

To explore how data collected by smartwatches can enrich immer-
sive virtual experiences and which current problems and gaps can
be addressed, we explored two use cases. We discuss (1) how mo-
tion data can be used for mid-air gesture tracking and touch input
for VR menu navigation, and (2) how health data can be used to
automatically adapt the VE in order to encourage relaxation and
promote lowering of one’s HR, and to reflect or counteract the
user’s predicted mood.

3.1 Use Case One: Smartwatch-Based Gestures
for VR Menu Navigation

For the first use case, we analyse how smartwatch-based gestures
can improve menu navigation in VR. We discuss both, mid-air and
touch-based gestures.

3.1.1 Mid-Air Gestures. Due to the smartwatch’s unique position
around the wrist close to the user’s hand, the motion sensors pick
up finger and hand movements. Early studies have shown that
collected data from off-the-shelf smartwatches allows the tracking
of (1) distinct gestures [42, 45], and (2) real-time tracking of body
posture [24] and arm posture [32, 33]. Equipping both wrists with
a smartwatch could even allow for tracking gestures of both hands
simultaneously, as well as enabling two-hand gestures.

Using smartwatches for gesture and motion tracking in VR bares
potential for hands-free interaction, reducing the need for hand-
held VR controllers. It also offers ergonomic advantages over the
visual/camera-based hand tracking, as the users’ hands do not have
to stay elevated to remain within the camera’s field of view (FoV).
Using the user’s wrist rotation for the interaction in VR has already
been explored in the context of a mobile VR game [15], and a
smartwatch was tracked in VR for 6-DOF hand movement with
additional two cameras and marker detection [16].

In a preliminary experiment, we explored the feasibility of using
smartwatch-based gestures for menu navigation and item selection
in VR. We found that each gesture was associated with distinct
patterns in observed sensor data. The strongest patterns emerged
for gestures such as air swipes and wrist flicks (gentle, but brisk

left and right rotations). Our initial findings show that even simple,
naive approaches were sufficient for accurate gesture recognition,
without the need for more resource-demanding methods, such
as spectral analysis or machine learning techniques. This is an
important finding because less computation usually means better
responsiveness, especially when computational power is limited,
like on mobile devices.

Since our initial findings showed strong patterns for air swipe
and wrist flicks, using them for the menu navigation in VR could be
a reliable solution. We imagine that gentle left and right air swipe
gestures could be used for browsing through items in a horizontally
arranged graphical user interface (GUI) (as shown in Figure 1a),
a brisk air swipe to jump to either the first or last menu item,
depending on the swipe direction. Due to the rotational movement
of wrist flicks, we see their application for navigating circular GUIs,
for example rotating them, or charging the currently highlighted
item. To select an item within these menus and to confirm the item
selection, we imagine using an air or surface tap as gesture.

3.1.2 Touch-basedGestures. Besidesmid-air gestures, smartwatches,
further, offer touch input for menu navigation, introducing another
set of smartwatch-based gestures for VR. By matching the physi-
cal smartwatch with it’s virtual representation, users can perform
familiar touch gestures such as a swipe or a tap on the physical
screen. Navigating through the menu is, therefore, augmented with
passive haptic feedback.

Such passive haptic feedback has been shown to improve the
interaction with two-dimensional GUIs [20]. Further, it would be
beneficial to anchor the GUI to the smartwatch, since menus can
be thus easily moved in and out of the FoV. [18]. We have also
considered using two smartwatches in tandem - placing each smart-
watch on one of the user’s wrists. This could allow for separate,
independent menus, that could be attached to either of the user’s
hands. Potential use cases could include context-dependent menus.

In particular, we envision three ways of menu navigation using
touch input. (1) Two-dimensional buttons could be presented on the
virtual smartwatch screen itself, for example for yes/no-selections.
(2) A two-dimensional GUI extends the space of the screen and
by swiping left or right on the screen, the menu is moved. (3) A
circular GUI is arranged around the virtual smartwatch and by
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performing circular motions on the screen, the menu rotates (as
shown in Figure 1b). For selecting a menu item, users could tap
on the screen, which could further be augmented by vibrotactile
feedback. Such subtle vibrations of the smartwatch could also be
used to gain users’ attention to look at the virtual GUI, for example
when a confirmation from the user is required.

3.2 Use Case Two: Health Data for Mental
Health in VR

Using digital tools to support health management are on the rise [10,
36] and have become even more pronounced due to the COVID-
19 pandemic [7]. Gathering health data from smartwatches can
enable a VR system to sense the user’s physical and mental state,
which offers more objective data than self-reports and more holistic
data than current VR controllers and HMDs. This form of implicit
input [31] can result in individually-tailored VR experiences.

Thinking about smartwatches and VR, the benefits for physical
health immediately come to mind, for example to better track the
effectiveness of sportive VR games [44]. However, against the back-
drop of COVID-19, it is beneficial to develop ideas to use health
data to improve VR mental health management. Although user
acceptance of such has been already highlighted [25], concrete use
cases of how health data can enrich VR are currently lacking in
literature. Thus, we will introduce our ideas on implicit smartwatch
input to relax one’s HR and to include mood predictions in a VE.

3.2.1 Relaxation of Heart Rate. Many areas within mental health
management make use of VR as an affective medium [30], whose
immersive VEs can evoke emotional states similar to reality [28].
The two most prominent forms of interventions within this field
are exposure therapy in which patients practice coping strategies
for various anxieties in a save environment [30], and relaxation
practices, in which meditation [8, 27], stress reduction [38, 39, 43],
and mindfulness strategies [22, 26] are taught. Both approaches
rely on tracking the user’s progress through the state of their re-
laxation, achieved mostly through self-reports or via bio-signal
measurements as higher bio-signals are connected to stress and
excitement [19] and indicate being highly activated [6]. These are
measured mostly in two ways: either by the HMD "listening" to
the user’s breathing rhythm as performed in many commercially
available relaxation games [23, 40] but which is only one entity
of relaxation and not a reliable measure, or via cumbersome and
costly equipment like headbands, electrodes, and trackers [1, 9].

Using the smartwatch’s health data instead couldmore efficiently
track implicit body reactions of the average user, effectively pro-
viding objective measurements on the effectiveness of therapeutic
interventions. Further, this could also improve the user experience,
widening the target group of mental health VR apps. In detail, we
imagine that HR and stress level could be visualised and made
audible in a VE. As an objective to increase one’s relaxation, the
surrounding environment could get gradually revealed the more
the user’s HR synchronises with the target HR (as shown in Fig-
ure 1c). Further, objects could pulse and move with the target HR
and increase in colour over time.

3.2.2 VE Adjustments based on Mood Prediction. Being able to
identify one’s feelings is often a cognitively demanding task for

patients [17], however, being aware of one’s emotions has been
shown to improve one’s mental well-being [2]. In order to promote
emotional awareness through visualisation, technologies such as
VR promise to "open up" the user to their emotions more effec-
tively than classical approaches [14] by offering a virtual space for
complex performance-based artistic expression [5] and individually
designed therapeutic environments [13].

Despite the good preconditions, few VR applications encourage
an active altercation with one’s feelings: Either users can choose a
VE fitting to their own mood (or eliciting a certain emotion [21]) be-
fore entering a VE, for example by choosing different surroundings
or colour-themed "mood worlds" [37], or they are able to manipu-
late their surrounding within a VE, for example by making it rain in
NatureTreks VR [12]. Such manipulation is very limited and not yet
very common in VR mental health apps. Thus, we see an expand-
able field for development regarding personal mood integration in
VR.

Some related works have shown the feasibility of mood predic-
tions [11]. On the premise that feelings are overlapping complex
experiences that can be categorised by a pleasance/valence and an
arousal/activation dimension [29], several health data can be used
to draw a conclusive picture of one’s mood: the higher the HR [6],
the higher the physical activity (measured by step counts [4, 19]
and accelerometer [11]), the more consistent the movement (sam-
pled by a low variance in the accelerometer’s x-coordinate) [6], or
a combination of these [11], the higher the self-reported level of
pleasance and activation.

Effectively, easily accessible health data gathered by smartwatches
can be used to allow for a certain level of automatisation in the
process of visualising one’s feelings. This is especially beneficial
for users struggling to define own emotions, as it can provide an
objective representation of one’s emotional state which supports
self-reflection. As an example, we imagine a VE which, based on
mood predictions of the health data, automatically adjusts the light
and weather conditions, colours, and movements of animals to vi-
sualise one’s mood (see Figure 1d). It could then gradually change
these entities to improve one’s mood, as related works have shown
that those have an emotional impact [21].

4 CONCLUSION & FUTUREWORK
Smartwatches as everyday items are worn by more and more peo-
ple. This paper is a first step to explore the design space of how
data gathered by a smartwatch can enrich an immersive virtual
experience. We demonstrated how smartwatches (1) facilitate ges-
ture recognition in VR for menu navigation and item selection,
using mid-air and touch-based gestures, and (2) provide implicit
data about the physical and mental state of a user that can be used
to improve a user’s relaxation and to automatically adapt a VE to
the user’s mood. As highlighted by our concrete use cases, incor-
porating smartwatches into VR offers numerous possibilities for
future research.
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