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Abstract—The majority of blindness is preventable, and is
located in developing countries. While mHealth applications for
retinal imaging in combination with affordable smartphone lens
adaptors are a step towards better eye care access, the expert
knowledge and additional hardware needed are often unavailable
in developing countries. Eye screening apps without lens adaptors
exist, but we do not know much about the experience of guiding
users to take medical eye images. Additionally, when an AI
based diagnosis is provided, trust plays an important role in
ensuring in the adoption. This work addresses factors that
impact the usability and trustworthiness dimensions of mHealth
applications. We present the design, development and evaluation
of EyeGuide, a mobile app that assists users in taking medical
eye images using only their smartphone camera. In a study
(n=28) we observed that users of an interactive tutorial captured
images faster compared to audible tone based guidance. In a
second study (n=40) we found out that providing disease-specific
background information was the most effective factor to increase
trustworthiness in the AI based diagnosis. Application areas
of EyeGuide are AI based disease detection and telemedicine
examinations.

Index Terms—mHealth, eHealth, Smartphones, Mobile devices,
AI Diagnosis, Telemedicine, Eye diseases

I. INTRODUCTION & MOTIVATION

According to the World Health Organization (WHO), 65.2
million people have cataract, a cloudiness in the lens of the
eye, leading to increasingly blurred vision [1]. Of the visually
impaired and blind, 90% live in developing countries and 80%
of visual impairments are preventable [2]. In many countries,
the poorest households are more likely to have access to
mobile phones than to toilets or clean water [3]. With this
background, mobile health (mHealth) technologies that can
support the early detection of causes of preventable blindness
should be explored with high priority. Retinal screening pro-
grams for common eye diseases can provide early detection of
chronic eye diseases, but come at a high cost, e.g., a stationary
slit lamp camera for traditional ophthalmology costs about
$15.000 [4]. One step to increase the affordability of retinal
screening is to use a shared community smartphone fitted with
a lens adaptor, e.g. Peek Retina ($240) or D-Eye ($435). Such
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Fig. 1. Smartphone based eye disease diagnosis app. The scope of this
paper covers (1) the tutorial and image capture phases and (2) the diagnosis
feedback, focusing on the trustworthiness of the diagnosis. The AI based
diagnosis functionality is not in the scope of this paper.

solutions can be applied by clinicians and nurses in areas with
limited healthcare facilities and have been shown to perform
well in disease detection. [4]

Whilst the increasing availability of smartphones has re-
sulted in a growing market for mHealth applications, e.g. in
the areas of respiratory diseases [5] and dermatology [6], there
is little evidence of positive clinical outcomes [7]. Studies
have suggested that users require consumer-friendly devices
and apps that are self-reinforcing and enjoyable to use [8].
Reporting on experiences in the UK’s National Health Service,
[9] highlight ease of use of mHealth apps as a deciding
factor in their adoption. A further barrier to the adoption of
mHealth services is their perceived trustworthiness, e.g. in
the competence of the provider, privacy or security of the
service [10, 11, 12].

To address the issues mentioned above, we developed a
user-friendly smartphone app for eye disease detection. In
this paper, we focus specifically on the phases of image
capture and the presentation of the diagnosis to the user
(Figure 1). To account for a wide range of individual’s living
circumstances, we target a solution enabling self-taking of
medical eye images, and focus on the use of the smartphone’s
higher quality rear camera. Whilst there is much prior work



on automated diagnosis of eye disease from images, e.g. using
deep learning [13, 14, 15, 16], the effectiveness of this is
limited if the source images for analysis are of poor quality.

The contribution of this work is twofold as we connect
the fields of usability and trustworthiness in the context of
mHealth. As suggested by others [17, 18, 19], the usability
of mHealth applications impacts trustworthiness, i.e. users
find applications that consider usability principles to be more
trustworthy. Therefore, we describe the design, development
and evaluation of the multi-modal EyeGuide app, that guides
users in the capture of eye images suitable for detection of
eye diseases such as cataracts. To support the task, the app
includes a tutorial phase and uses auditory and visual guidance
to direct the user to position the camera correctly. As a second
contribution, we present a study exploring different approaches
to increase the perceived trustworthiness of the eye disease
diagnosis app.

From our evaluation, we report that the interactive tutorial
had advantages in terms of usability of quality of taken
images compared to the auditory guidance. A review of
the taken images by an ophthalmologist indicated that the
images taken with our app are suitable for diagnosing diseases
in the conjunctiva and cornea. The most effective way to
build trustworthiness in the app was through increasing users’
knowledge level about the disease.

II. RELATED WORK

Our work in the area of intelligent user interfaces builds on
three areas of prior work on (1) smartphone based mHealth
for eye diseases, (2) guiding image capture, and (3) trust-
worthiness in mHealth. Firstly, we introduce existing mHealth
applications addressing eye-related diseases. We then present
works with different approaches to guide users when taking
photographs, e.g. ensuring the subject is correctly located in
the frame. Finally, we give a short overview of issues surround-
ing the perceived trustworthiness of mHealth applications.

A. Smartphone-Based Eye Disease Diagnosis

Prior work has presented smartphone apps to diagnose dis-
ease based on eye-images, e.g. for cataract detection [20, 21],
to identify high cholesterol levels [22, 23], to diagnose
concussions [24] and for glaucoma screening [23, 25]. Akil
and Elloumi [26] present a meta paper, investigating the image
quality and diagnosis performance achieved in eight prior
works using smartphones equipped with additional lenses for
retinal examination. Most recently deep learning has been pre-
sented as an approach to identify eye diseases [13, 14, 15, 16].
For example, Wei et al. [14] presented a deep learning based
smartphone app to identify retinal abnormalities. The system
gives simple real-time textual feedback ‘normal / disease
detected’, requires the use of an additional D-Eye lens fitted
to the smartphone and cannot be self-administered. Kim et al.
[27] developed and evaluated an automated smartphone-based
system for retinal disease screening using a 3D printed housing
for acquiring a series of seven images stitched together to a
widefield retinal montage. Munson et al. [28] developed a free

smartphone app able to identify ‘white eye’ and subsequent
eye disorders based on casual photographs of small children.
The authors reported the app correctly diagnosed 80% of
children with eye disorders. EyeGuide builds upon work
by Diethei and Schöning [29] who explored an agent-based
tutorial for eye image guidance. In this paper, we present
a study to assess the usability of auditory guidance and an
interactive tutorial to take eye images without the need of
additional lenses or other hardware.

B. Guiding Image Capture

Ensuring correctly positioned and high quality images of the
eye is a critical element in the performance of the following
diagnosis phases, either manually by a doctor or through AI
based solutions. As the target of our approach is towards the
creation of a self-administered eye examination tool, using the
device’s higher quality rear camera, solutions to guide the user
in image capture are needed. Similar challenges have been
addressed in mHealth apps for dermatology. For example, in
the Skinvision app [30] the user “waves” the smartphone over
the skin lesion to be investigated, and the app automatically
selects when to take the image for analysis. This unguided
approach could potentially be improved on with audio feed-
back [31], e.g., similar to that used for navigation [32]. A
summary of approaches to integration non-speech sounds to
visual interfaces has been presented by [33], suggesting
the use of earcons [34, 35], sounds with dynamic timber,
pitch and rhythm, as suitable for localization tasks. To guide
users to take better portrait photos with smartphones, [36]
demonstrated a solution using verbal guidance e.g. “please
move to the left”, to which [37] added vibration modality.

C. Trustworthiness

The importance of the user interface in perceived trustwor-
thiness has been reported by several works, e.g., [17, 18, 19].
Kim and Moon [19] have shown that the user interface design
factors impact customer confidence. Roy et al. [17] found out
that the usability factors ease of navigation, ease of learning,
perception and support were associated with trustworthiness.
In the field of eHealth, Vo et al. [38] highlighted trustworthi-
ness, appropriateness, personalization, and accessibility as the
main weaknesses in current mHealth apps. Fruhling and Lee
[39] developed a usability model for the consumer’s perception
of trust in eHealth services, noting that websites with a higher
usability were likely to be viewed as more trustworthy. Going
beyond usability, others have highlighted the role of visual
aesthetics in the design of mHealth apps in their perceived
credibility [40]. However, mHealth app designers do not have
free hands, the requirements for apps to meet regulatory
requirements can impact the design, and consequentially affect
the perceived trustworthiness the app [41].

D. Summary of Prior Work

From the related work we learn that, whilst much research
effort has been spent addressing automated eye-disease diag-
nosis from images, little research has addressed the activities
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Fig. 2. Flow diagram of the two study conditions. Participants in the interactive tutorial group first watched a tutorial demonstrating the procedure to take
eye images and then followed voice instructions. In the auditory guidance group, participants only read brief instructions to take an image of the iris and were
then supported through voice and beep tone guidance.

preceding or following this in an operational mHealth solu-
tion. With a focus on these phases we, (1) demonstrate and
evaluate two solutions using audio signals and an interactive
tutorial to guide users to take optimal medical eye images (2)
present design alternatives aiming to improve the perceived
trustworthiness of mHealth smartphone apps. In particular our
approach follows Akter et al.’s [42] dimensions of trustwor-
thiness; ability, benevolence, integrity and predictability.

III. EYEGUIDE

The EyeGuide app guides the user to take high quality
images of their own eye, using the rear camera of a smart-
phone. These images are suitable for analysis by a clinician
or through an automated AI process. As in this configuration
the smartphone’s screen is facing away from the user, the user
must be guided to position the camera to fully capture the eye.

A. Concept

To understand the issues related to clinical eye photography
on a smartphone, we first instructed four individuals to acquire
photos of their iris with their smartphone in a prestudy. The
participants used the native camera application with both the
front and rear camera. An analysis of the resulting images
revealed that lighting and device positioning seemed to be the
predominant causes of blurry images or images without a fully
visible iris. The front camera did not provide sufficient image
quality for our purpose of detecting diseases due to the lack
of an autofocus functionality and the lower image resolution.
Although the front cameras of the latest high-end smartphones
are of higher resolution than those used in the test, considering
our target populations in developing countries, the use of older,
lower-cost devices with limited front camera resolution is more
representative.

Based on previous work by Diethei and Schöning [29] and
the cognitive theory of multimedia learning [43], two variants
were implemented:

• Interactive tutorial (referred to as IT)
• Reading instructions followed by voice and audio tone

based guidance (referred to as ‘auditory guidance’; AG)
The procedures of the two app variants are illustrated in

Figure 2.
In the interactive tutorial (IT) case, the process of posi-

tioning the phone is first demonstrated with an on-screen
animation (Figure 3). After viewing the complete animation,
the user is guided by voice instructions to complete each of the
steps in turn. When the camera is in the right position the user
is instructed to ‘stop’ and, after a countdown of three seconds,
the camera flash light is activated to illuminate the eye evenly

(a) (b) (c)

Fig. 3. Tutorial to take the eye photos. Left (a): Arm outstretched in front of
face. Center (b): Moving the phone closer to the eye until the word “stop” is
played back. Right (c): Countdown and image acquisition with flash.



and the photo is taken. In the auditory guidance (AG) case,
voice guidance is used for coarse positioning, e.g. ‘to the
right’, ‘up’. When the eye is recognised in the middle of the
screen, the audio output consists of a sequence of short tones,
which become more frequent with better camera positioning
(cf. Geiger counter metaphor, [32]). As soon as the camera is
in the correct position, the audio tone becomes continuous,
the camera flash light is illuminated and the eye photo is
automatically taken. In both IT and AG cases successful
acquisition is indicated through a camera shutter sound and
vibration feedback. At the end of the process, an image review
screen is shown to the user with the option to retake should
the iris be blurry.

B. Implementation

EyeGuide is an Android app written in Java. To track
the eye position we used the openCV library with the
Haar Feature-based Cascade Classifier for
Object Detection [44], which is an AI-based model
for image recognition tasks. To find the optimal parameters
for the eye detection (detectMultiScale method,
parameters scaleFactor and neighbors), we took
50 sample images, 28 with eyes and 22 without, with the
rear camera of a Samsung Galaxy S7. The images without
eyes showed other parts of the face around the eyes. We
then analyzed the classifications (correct, false positive, false
negative) for combinations of the parameters. Finally, we
chose the parameters with the highest accuracy and speed.

For the interactive tutorial (IT) case, graphics and anima-
tions were created using standard graphic design applications.
To design the tutorial and the virtual agent with a focus on
teaching motor skills, we adhered to the cognitive theory of
multimedia learning [43], in particular the pre-training and
segmenting principle. The voice instructions were recorded by
author LD. To give feedback about the position of the eye in
the auditory guidance (AG) case, the camera view was divided
into five virtual rectangles; one in the center of the frame and
four around the center. If an eye was recognised in one of the
outer rectangles, speech guidance was given using the Android
Text-To-Speech engine, e.g. “to the right”. The maximum
frequency of the speech guidance was two seconds. When
the eye was detected in the central rectangle, the guidance
mechanism was changed to a sequence of short tones, which
become more frequent with better camera positioning.

In both IT and AG cases, when the camera was optimally
positioned, indicated either by ‘stop’ (IT) or a continuous
tone (AG), a full-resolution photo was automatically saved to
the phone. In the capture phase, guidance was based only on
position, as the available computing power and lower quality
camera stream did not support analysing the sharpness of the
image in real time.

C. Evaluation

To evaluate the user experience of EyeGuide and its per-
ceived diagnosis trustworthiness we conducted a user study.
The study was conducted as a lab study and evaluated the

Fig. 4. To rate the image sharpness in the EyeGuide study, we used a series
of images as a reference. From left to right: completely sharp (1), sharp (2),
slightly out of focus (3), blurry (4), completely blurry (5).

two alternative designs, IT and AG, to enable comparison
(Figure 2). We recruited 28 participants and assigned them
to two groups (IT and AG) of 14. The IT group had a mean
age of 23, while the AG group had an mean age of 22. Both
groups consisted of six female and eight male participants.
Five participants of the IT group and seven participants of the
AG group wore glasses to correct their vision.

The study sessions were video recorded and all data col-
lected during the study was stored anonymously. The par-
ticipants were first introduced to the target of the study and
its process and were then asked to sign a consent form. Af-
terwards, participants completed a demographic questionnaire
and the TA-EG questionnaire [45], which measures technical
affinity. Participants were encouraged to think-aloud during the
test. The smartphone running the EyeGuide app was handed to
the participants and they proceeded to follow the instructions
given by the app. At the end of the test, participants responded
to open questions about the experience of using EyeGuide.

D. Results

We firstly compared the number of attempts and time
needed to take an acceptable eye image in both interactive
tutorial (IT) and auditory guidance (AG) configurations. We
conducted independent samples t-tests with α set to .05.
Participants in the IT group (Mtries = 1.8, SD = .47) and
in the AG group (Mtries = 1.3, SD = 1.19) did not differ in
tries to capture the first eye, t(26) = 1.46, p > .05). However,
the duration needed to take photos of both left and right eyes
was significantly lower, t(26) = -2.17, p < .05, in the IT
group (Mduration = 151s, SD = 115.3s) than in the AG group
(Mduration = 247s, SD = 118s).

Author LD rated the sharpness of the eye images by compar-
ing them to a set of pre-defined reference images (Figure 4).
The number of images rated with each quality level are shown
in Figure 5. A majority of images was either completely sharp
or sharp in both groups (IT: 17, AG: 15) and only one image
was completely blurry in each of the groups. No significant

Interactive 
Tutorial

Auditory 
Guidance

11 6 5 5 1

6 9 10 2 1

Completely sharp Sharp Slightly out of focus Blurry Completely blurry

Fig. 5. Distribution of image sharpness ratings. Each participant (n = 28)
took two images, one for each eye. There were no significant differences in
image quality (p > .05) between the two groups (IT and AG).



difference between the two groups was apparent, t(26) = .437,
p > .05, with mean ratings for the IT group MimageQuality

= 3.75, SD = .87 and the AG group MimageQuality = 3.6,
SD = .86. Due to a technical error in the interactive tutorial
condition, the image capture was triggered at a larger distance
compared to the auditory guidance condition. This might have
improved the image quality since a lower device-eye distance
can cause blurry photos.

In the interactive tutorial (IT) group, the on-screen agent
instructed the participant to watch the following steps be-
fore putting them into practice. This instruction was viewed
and confirmed by every participant. However, as the tuto-
rial started, six out of 14 participants tried to follow the
instructions by turning the smartphone around while the first
step of tutorial was shown. Two of the six realized that it
was an instructive section of the tutorial when they were
asked to press the ‘next’ button, and turned the smartphone
back around to complete watching the tutorial. The other
four appeared to be confused on how to press the on-screen
‘next’ button while physically following the tutorial steps.
Eight of the 14 participants in the IT group had at least one
occasion where the word ‘stop’ was not played back, mostly
due to to incorrect positioning of the device in front of the
face. The participants then had to repeat the steps from the
beginning. However, while the smartphone was being moved
back to the start position, sometimes one of the eyes was
recognized, which triggered the ‘stop’ instruction and resulting
in participants capturing an image of their whole face. Other
problems noted in the IT group included participants thinking
they should capture both eyes at once, or not understanding
that the photo would be taken automatically. Four out of

five participants wearing glasses removed their glasses to
take the photo even though they were not asked to do so.
Participants were instructed to start taking each photo with
a fully outstretched arm, however, after going through the
process once, most participants did not fully outstretch when
taking subsequent photos.

In the auditory guided (AG) group, participants first read
the instructions before taking any photos. After turning the
smartphone around so they faced the rear camera, six of the
14 participants felt unsure about the correct distance from the
eye to hold the smartphone. Four of the participants were not
sure if they were required to take the photo themselves or
if the photo would be taken automatically. In addition, eight
participants were not able to interpret the meaning of the
beeping sound. Two of the participants said that they do not
know what to do when getting the voice instructions (to the
left/right, up/down). Six participants turned the smartphone at
least once to recheck the written instructions. In the AG group,
four of the seven participants wearing glasses took their glasses
off before taking the photos.

To summarise, the time to take images in the interactive
tutorial (IT) version of EyeGuide was lower than in the audio
guided (AG) version. The sequence of steps shown in the
tutorial was clear to most study participants. However, we
observed some usability issues, e.g. incorrectly carrying out
physical instructions when participants had been instructed
only to watch in the pre-training step.

IV. TRUSTWORTHINESS STUDY

Having evaluated different approaches for the tutorial and
image capture phases, we also addressed the diagnosis feed-
back phase of smartphone-based eye disease detection. To

(a) No trust-building (baseline). Ishi-
hara [46] plates were shown in all de-
sign alternatives, except for the assess-
ment diagnosis mismatch.

(b) Assessment-diagnosis mismatch.
Participants provided speech samples
that were not analyzed to allegedly
detect color blindness.

(c) The disclaimer explained that the
assessment performed in the study did
not replace an examination by a profes-
sional ophthalmologist.

(d) In the disease information design
variant, the participants were shown an
explanation of possible causes for color
blindness.

Fig. 6. The four design alternatives of the trustworthiness study.



gain insight into issues of trustworthiness in our targeted
automated eye disease diagnosis app, we conducted a second
experimental study.

A. Study Design

As the eye diseases we target with EyeGuide are rare in
healthy Western populations, for the purpose of our study we
decided to simulate the detection of the more common ailment
of color blindness. We did not conduct any actual diagnoses
and chose color blindness as an arbitrary common condition
that is related to vision. As a study probe, we developed a
separate Android app that included four alternative design
approaches (Figure 6) to building trust. Each of the alternatives
is mapped to one or two dimensions of the trustworthiness
model. The users’ interaction with the app was guided by an
animated avatar, that represented the virtual ophthalmologist
(Figure 7).

The four alternative designs included in our application
were:

1) No trust-building (baseline). This design represents the
standard procedure for the assessment and diagnosis of
color-blindness using the Ishihara test [46].

2) Assessment-diagnosis mismatch. This probe design ex-
amined if users trust the diagnosis even if there is a mis-
match between the assessment and the diagnosis. Partic-
ipants were asked to provide a speech sample to detect
whether they have color blindness, even though there is
no diagnostic relationship between these two modalities.
This intervention is a negation to ‘Predictability’ from
the trustworthiness model [42]. Predictability refers to
the degree to which an application is expected to behave
reliably by abiding to standard practices.

3) Disclaimer. With this design we aimed to find out
whether informing the user that their data will not be
used for wrong purposes and only with good intentions
builds trust in the application. This targets the ‘Integrity’
and ‘Benevolence’ dimensions of the trustworthiness
model. Benevolence refers to the good intentions of the
application towards the user, whereas integrity refers to
moral and ethical principles which an app should con-
form to. Therefore, to affirm both of these dimensions
in the app, we display a disclaimer as well as terms and
conditions at app start up.

4) Disease information This design addressed the ‘Ability’
dimension, which according to [42] is the most sig-
nificant in the trustworthiness model. Ability refers to
skills and competencies of the app that encourage the
user to accept it, e.g. the application contains the desired
knowledge about the task it performs. Addressing this,
our design provided information in text form about
color blindness to the user before actually starting the
assessment.

B. Evaluation

To compare the trustworthiness of our four design variants
we carried out a user study. The study followed a between-

Fig. 7. The virtual ophthalmologist avatar that leads through the color
blindness test and diagnosis procedure.

subjects design with the independent variable trust-building
feature (no trust-building, assessment-diagnosis mismatch, dis-
claimer, disease information) and the dependent variable trust-
worthiness. Participants were consecutively assigned to one of
the four groups. Based on Akter et al. [42]’s trustworthiness
model we developed the following hypotheses:

• H1: Giving background information about the condition
results in the highest trustworthiness score.

• H2: The lowest trustworthiness is observed when there is
a mismatch between assessment and diagnosis.

• H3: The highest benevolence score is achieved through
providing a disclaimer as well as terms and conditions.

• H4: Integrity is highest through displaying a disclaimer
and terms and conditions.

• H5: The ability score is highest when giving background
information about the disease.

At the start of the session, we informed participants about
the study both verbally and in writing. Participants then com-
pleted a consent form and a demographic questionnaire. After
that, participants were given a smartphone containing the study
app, which they opened and followed the instructions given by
the app. At the end of the study session participants filled out
a trustworthiness questionnaire and were given an opportunity
to provide open feedback on the test process. During the study,
the experimenter took notes. The trustworthiness questionnaire
developed for the study was a version of that developed
by [42], slightly modified for mHealth applications. The
questionnaire consisted of multi-item scales with favorable
psychometric properties. Each item in the questionnaire was
measured in a structured arrangement on a 7-point Likert-
type scale, ranging from 1 (strongly disagree) to 7 (strongly
agree). There are 4 items for each of the dimensions of
trustworthiness, and a final 4 questions directly investigating
trust.

We recruited 40 participants (MAge = 26.2, SD = 6.0), 18
of which were female and 22 male. Most of the participants
were students of the University of Bremen.

C. Results

We first report findings on the overall trustworthiness score
followed by the results referring to its sub-dimensions. To
test the effect of the independent variable design alternative
on the dependent variable trustworthiness, we conducted a
one-way ANOVA with the significance level α = .05. For
further analysis of the differences between groups, we used
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planned contrasts. When referring to individual participants,
we indicate the design alternative and the participant number
within the condition, e.g. P1.2 is participant 2 in the no trust-
building condition (no trust-building = 1, assessment-diagnosis
mismatch = 2, disclaimer = 3, disease information = 4).

As expected, we observed differences in trustworthiness
between the design alternatives (Figure 8), F(3,36) = 3.84,
p < .05, partial η2 = .24. When provided with disease in-
formation (M = 5.33, SD = 1.26), participants reported higher
trustworthiness compared to the other design alternatives, t(36)
= 2.68, p < .05. Also, a mismatch between assessment and
diagnosis led to the lowest trustworthiness, t(36) = -2.86, p <
.05.

While the integrity dimension score was affected by the
design alternative, F(3,36) = 5.23, p < .05, partial η2 = .30,
displaying a disclaimer did not lead to the highest integrity
score, t(36) = .79, p > .05. The descriptive data indicate that
providing disease information (M = 4.63, SD = 1.29) might
increase integrity.

Similarly, the design alternative had an effect on the benevo-
lence score, F(3,36) = 3.08, p < .05, partial η2 = .20. However,
contrary to our expectation, the disclaimer did not cause the
highest benevolence, t(36) = .54, p > .05. Again, there are
descriptive indications that disease information (M = 5.55, SD
= 1.49) is more effective in increasing benevolence.

Lastly, there was a difference in ability, targeted through
disease information, between the design alternatives F(3,36)
= 6.42, p < .001, partial η2 = .35. Consistent with our
hypothesis, information about color-blindness led to higher
ability, t(36) = 3.18, p < .05.

In the no trust-building group, seven out of ten participants
complimented the app with statements like “nicely done” (P
2.10) and “fast” (2.9). When questioned whether they would
trust the app or not only two of the participants said yes.

Participant 2.2 said she might have trusted it if she didn’t know
already that she is not color blind. Three out of ten participants
in the assessment-diagnosis mismatch group were confused
when presented with the results. Six participants questioned
the diagnosis of color blindness based on speech samples.
When shown the disclaimer and terms and conditions, seven
out of ten participants read both screens. One individual
skipped the terms and conditions text. All of the participants
performed the Ishihara test correctly. One of the participants
mentioned that they liked the app, especially the dialogue with
the virtual ophthalmologist (P 3.6). Participant 3.5 commented
that the app seems to have good intentions. On questioning
them about their trust in the app, only participant 3.5 said that
she trusted it, whilst participant 3.6 said she might trust it, but
was a little hesitant.

We observed that nine out of ten participants in the disease
information group read both the information screens, i.e.
“what is color blindness?” and “what causes color blindness?”.
Participant 4.2 skipped the “what is color blindness?” screen.
Six participants agreed that the app contains knowledge about
the disease. Three participants rated the app with comments
such as “user-friendly” (P 4.4) and “nice user interface” (4.10).
Five out of ten participants said that they trusted the app.
Participant 4.2 said she would trust the app if it was used
in cooperation with a doctor.

V. DISCUSSION

Through two studies we firstly examined the usability of
EyeGuide, a mHealth app to take medical eye photos and,
secondly, identified design considerations to ensure trustwor-
thiness of mHealth apps in general. While the evaluation of
EyeGuide addressed the image capture phase of an automated
eye disease diagnosis app, the trustworthiness study informed



on design approaches to increase trustworthiness in the diag-
nosis feedback phase.

A. EyeGuide
As some participants did not realise that the photo would

be taken automatically and that they should only capture one
eye at a time, not all tutorial instructions were understood
correctly. Similar confusions about the meaning of the voice
instructions (to the left/right, up/down) may have been due
to a misunderstanding if the object to be moved was the
smartphone or their head. On some occasions, participants
repeated steps or activated functions by mistake because
they were holding the smartphone in an incorrect position.
Participants in both groups were confused when they were
required to confirm the taken image.

Participants that wore glasses had similar problems with
both concepts. All the photos taken by participants wearing
glasses were of poor quality. Particularly, all those rated as
completely out of focus were taken by glasses wearers and
other images captured by glasses wearers were either blurry
or slightly out of focus. To remedy this, participants removed
their glasses - in hindsight this should have been instructed by
the app.

A possible reason for the interactive tutorial group being
faster in taking the eye images than the auditory guided tutorial
group is that the auditory guided tutorial group took longer
to find the correct device position. In contrast, the interac-
tive tutorial group just had to follow the given instructions.
Additionally, auditory guided participants often turned the
smartphone around to check the instructions again, which
added additional time. The mean time difference between
the IT and AG group to complete the two images was on
average about 100 seconds. In a real-world scenario, this
has probably implications on the frustration levels of users,
potentially leading to drop-outs in the AG concept.

In the interactive tutorial, some participants had trouble
distinguishing between the sections of the tutorial where they
were supposed to only watch the instructions and the sections
where they had to actively carry out the instructions, e.g.
actually turn around the phone. While the agent instructed
the participants to first watch the steps before following them
together, this was apparently not salient enough. We suggest a
multi-modal indication of whether to watch only or carry out
the instructions, e.g. a voice and text instruction.

In the auditory guidance group, many users did not recog-
nize the Geiger counter metaphor, i.e. a beep tone with shorter
intervals as they approached the target position.

Overall, we believe that the interactive tutorial concept had
a better user experience. While some errors were detrimental
to task completion and image quality, the concept of providing
instructions that have to be carried out afterwards has shown
to be effective in the context of taking eye images.

B. Trustworthiness
Our results indicate that providing users with disease-

specific information increases the trustworthiness and po-
tentially also positively impacts benevolence and integrity.

This is consistent with Akter et al. [42] who regarded the
ability dimension, i.e. the perceived skills and competences
of an app that encourage users to use it, as the most sig-
nificant. Therefore, we confirm our hypothesis H1. On the
other hand, trustworthiness is lowest when the assessment and
the diagnosis modalities do not match, we can confirm H2.
The disclaimer did not lead to the highest benevolence and
integrity dimension, meaning we reject our hypotheses H3
and H4. There are descriptive trends that suggest that disease
information is the most effective factor to increase these two
trustworthiness dimensions. Furthermore, participants reported
the highest trustworthiness when shown disease information;
we therefore confirm H5.

C. Diagnostic Limitations

Whilst we propose that EyeGuide requires less expert
knowledge and provides better accessibility compared to ex-
isting smartphone adaptors for retinal imaging, it is important
to note that the spectrum of detectable diseases between the
two approaches differs. Through fundus images taken using
smartphone adaptors, a range of diseases such as diabetic
retinopathy, glaucoma, and age-related macular degeneration
can be diagnosed [47]; with these images, algorithmic ap-
proaches can be use to predict cardiovascular risk factors [48].
Smartphone cameras without additional lens adaptors do not
allow for retina inspection and can only identify symptoms
of diseases that are visible on the outside of the eye (e.g.,
conjunctiva or cornea). However, as some of the diseases
visible with the naked eye, e.g. cataracts, are preventable [2],
there is an obvious need for better screening, education and
intervention in eye care. We argue that easy access to Eye-
Guide through a smartphone and the possibility of detecting
cataracts, which are responsible for 33% of global blindness,
with smartphone images justifies further research on this topic.

D. Contribution and Future Work

Given the recent development of AI-based diagnosis ap-
proaches, we argue that there are a large amount of potential
application areas for EyeGuide to be integrated as part of
existing eye-disease screening and diagnosis tools. The in-
teractive tutorial, based on principles of multimedia learning,
was successful in preparing most users to capture high quality
images. Minor usability issues were identified in the user study
and will be addressed in the following design iterations of
EyeGuide.

We are one of the first to explore solutions for guiding
image capture for eye images. While similar approaches in the
domain of dermatology [30] include features to automatically
trigger image capture, they do not provide any support for de-
vice positioning. Other authors [36] described the use of verbal
guidance for taking portrait photos, however, our interactive
tutorial (IT) approach combines a tutorial and verbal guidance
as an integrated solution.

Based on our findings, we suggest that the designers of
mHealth applications should include disease-specific informa-
tion to ensure trustworthiness. While we focused on color



blindness in our trustworthiness study, our findings are gener-
alizable to other mHealth fields beyond eye-related diseases.
As future work we plan to extend our study to encompass
a broader sample, e.g. the elderly, and to explore the use of
our EyeGuide approach as part of iris imaging for biometric
authentication [49, 50, 51].

VI. CONCLUSION

In this paper, we presented two studies exploring the usabil-
ity and trustworthiness of eye-related mHealth applications.
An interactive and multi-modal tutorial that demonstrates
correct device positioning was successful in reducing acqui-
sition time. An easy to use, self-administered app to support
screening and diagnosis of eye-related conditions can increase
eye care access, especially in developing countries. Providing
disease-specific background information was shown to be the
most effective intervention to increase trustworthiness in the
diagnosis. Our findings are relevant to the designers and de-
velopers of mHealth applications in the area of ophthalmology
and other medical fields.
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and J. Schöning, “Medical selfies: Emotional impacts and
practical challenges,” in 22nd International Conference
on Human-Computer Interaction with Mobile Devices
and Services, ser. MobileHCI ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3379503.3403555

[32] S. Holland, D. R. Morse, and H. Gedenryd, “Audiogps:
Spatial audio navigation with a minimal attention inter-
face,” Personal and Ubiquitous computing, vol. 6, no. 4,
pp. 253–259, 2002.

[33] R. Absar and C. Guastavino, “Usability of non-speech
sounds in user interfaces,” in Proceedings of the 14th
International Conference on Auditory Display (ICAD
’08), 06 2008.

[34] M. M. Blattner, D. A. Sumikawa, and R. M. Greenberg,
“Earcons and icons: Their structure and common design
principles (abstract only),” SIGCHI Bull., vol. 21,
no. 1, pp. 123–124, Aug. 1989. [Online]. Available:
http://doi.acm.org/10.1145/67880.1046599
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